Parabolic Systems with Polynomial Growth and Regularity

The authors establish a series of optimal regularity results for solutions to general non-linear parabolic systems $u_t- \mathrm{div} \ a(x,t,u,Du)+H=0,$ under the main assumption of polynomial growth at rate $p$ i.e. $|a(x,t,u,Du)|\leq L(1+|Du|^{p-1}), p \geq 2.$ They give a unified treatment of various interconnected aspects of the regularity theory: optimal partial regularity results for the spatial gradient of solutions, the firs...